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1 The matrices A, B and C are given by A = ( 2 5 ), B = ( 3 −1 ) and C = ( 4

2
). Find

(i) 2A + B, [2]

(ii) AC, [2]

(iii) CB. [3]

2 The complex numbers " and w are given by " = 4 + 3i and w = 6 − i. Giving your answers in the form
x + iy and showing clearly how you obtain them, find

(i) 3" − 4w, [2]

(ii)
"*

w
. [4]

3 The sequence u1, u2, u3, . . . is defined by u1 = 2, and un+1 = 2un − 1 for n ≥ 1. Prove by induction

that un = 2n−1 + 1. [4]

4 Given that
n

∑
r=1

(ar3 + br) ≡ n(n − 1)(n + 1)(n + 2), find the values of the constants a and b. [6]

5 Given that A and B are non-singular square matrices, simplify

AB(A−1B)−1. [3]

6 (i) Sketch on a single Argand diagram the loci given by

(a) |" | = |" − 8 |, [2]

(b) arg(" + 2i) = 1
4
π. [3]

(ii) Indicate by shading the region of the Argand diagram for which

|" | ≤ |" − 8 | and 0 ≤ arg(" + 2i) ≤ 1
4
π. [3]

7 (i) Write down the matrix, A, that represents a shear with x-axis invariant in which the image of the
point (1, 1) is (4, 1). [2]

(ii) The matrix B is given by B = (
√

3 0

0
√

3
). Describe fully the geometrical transformation

represented by B. [2]

(iii) The matrix C is given by C = ( 2 6

0 2
).

(a) Draw a diagram showing the unit square and its image under the transformation represented
by C. [3]

(b) Write down the determinant of C and explain briefly how this value relates to the
transformation represented by C. [2]
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8 The quadratic equation 2x2 − x + 3 = 0 has roots α and β , and the quadratic equation x2 − px + q = 0

has roots α +
1

α
and β +

1

β
.

(i) Show that p = 5
6
. [4]

(ii) Find the value of q. [5]

9 The matrix M is given by M =


a −a 1

3 a 1

4 2 1

.

(i) Find, in terms of a, the determinant of M. [3]

(ii) Hence find the values of a for which M−1 does not exist. [3]

(iii) Determine whether the simultaneous equations

6x − 6y + " = 3k,

3x + 6y + " = 0,

4x + 2y + " = k,

where k is a non-zero constant, have a unique solution, no solution or an infinite number of
solutions, justifying your answer. [3]

10 (i) Show that
1

r
−

2

r + 1
+

1

r + 2
≡

2

r(r + 1)(r + 2)
. [2]

(ii) Hence find an expression, in terms of n, for

n

∑
r=1

2

r(r + 1)(r + 2)
. [6]

(iii) Show that

∞

∑
r=n+1

2

r(r + 1)(r + 2)
=

1

(n + 1)(n + 2)
. [3]
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1 (i) )  B1B1 2 Each element correct   
     SC (7,9) scores B1  
 ----------------------------------------------------------------------------------------------------------------------------------------------- 
 (ii) B1*  Obtain correct value 
   depB1 2 Clearly given as a matrix 
 -----------------------------------------------------------------------------------------------------------------------------------------------

 (iii)  M1  Obtain 22 × matrix  

   A1  Obtain 2 correct elements  
   A1 3 Obtain other 2 correct elements 
   7 

( 97

( )18  

¸̧
¹

·
¨̈
©

§
−
−

26
412

 
 
2. (i)  – 12 +13i B1B1 2 Real and imaginary parts correct  
------------------------------------------------------------------------------------------------------------------------------------------------ 
 (ii)  B1  z* seen 
   M1  Multiply by w* 

  
37
14

37
27 − i A1  Obtain correct real part or numerator 

   A1 4 Obtain correct imaginary part or denom. 
     Sufficient working must be shown 
   6 
 
 
3   B1*  Establish result true for n = 1 or 2 
   M1*  Use given result in recurrence relation in a  
     relevant way 
   A1*  Obtain 2n + 1 correctly 
   depA1 4 Specific statement of induction conclusion 
  
   4    
 

4  Either B1 Correct value for  stated or used 
   M1  Express as sum of two series 

  

 ¦ r

)1(
2

)1(
4

22 +++ nbnnna
 A1  Obtain correct unsimplified answer 

    M1  Compare coefficients or substitute values  
      for n 
  a = 4   b = – 4  A1 A1 6 Obtain correct answers 
  Or 
   M1  Use 2 values for n 
  a + b = 0  4a + b = 12 A1 A1  Obtain correct equations 
   
   M1  Solve simultaneous equations 
  a = 4   b = – 4 A1 A1  Obtain correct answers 
     
   6 
  
5   B1  (A-1)-1 = A seen or implied 
   M1  Use product inverse correctly 
  A2  A1cao 3 Obtain correct answer 
   3 
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6 (i) (a) B1*  Vertical line 
   depB1 2 Clearly through ( 4, 0 ) 
   (b) B1  Sloping line with +ve slope 
      B1  Through ( 0, -2 ) 
   B1ft 3  Half line starting on y-axis 45o shown 

    convincingly 
------------------------------------------------------------------------------------------------------------------------------------------------ 
 (ii)  B1ft  Shaded to left of their (i) (a) 
   B1ft  Shaded below their (i) (b) must be +ve 
     slope 
   B1ft 3 Shaded above horizontal through their 
     (0, -2 ) 
     NB These 3 marks are independent, but 
     3/3 only for fully correct answer. 
   8 
 
 

7 (i)  B1 B1 2 Each column correct  

-----------------------------------------------------------------------------------------------------------------------------------------------
(ii)  B1*  Enlargement or stretch in x and y axes  
  depB1 2 Scale factor

¸̧
¹

·
¨̈
©

§
10
31

 3  

(iii) (a) B1  ndicated 
  B1  (8, 2) seen 
  B1 3 Accurate diagram, including unit square  
----------------------------------------------------------------------------------------------------------------------------------------------- 
       (b)  detC = 4 B1  Correct value found 
  B1 2 Scale factor for area 
  9 

)2,6(),0,2(  i

   
8 (i)  Either  

 
2
3,

2
1 ==+ αββα  B1   State or use both correct results in (i) or (ii) 

   or   )(
3
2 βαβα +++  

αβ
βαβα +++ M1  Express sum of new roots in terms of

    αββα  and +  

   M1  Substitute their values into their expression 

  
6
5=p  A1 4 Obtain given answer correctly 

 
  Or 

   B1 Substitute )0(23 2 =+− uu  
u

x 1= and obtain correct 

     quadratic (equation) 
   M1  Use sum of roots of new equation 
   M1  Substitute their values into their expression 

  
6
5=p  A1  Obtain given answer correctly  

------------------------------------------------------------------------------------------------------------------------------------------------ 
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 (ii) 
β
α

α
β

αβ
αββα +++= 1''  B1  Correct expansion 

  
αβ

αββα
β
α

α
β 2)( 2 −+=+  M1   Show how to deal with 22

   A1  Obtain correct expression  
   

  

 βα +  

3
1=q  M1  Substitute their values into βα ′′  

   A1 5 Obtain correct answer a.e.f. 
   9 
 
9 (i)  M1  Show correct expansion process for 3 x 3 
   M1  Correct evaluation of any 2 x 2 
  det M = A1 3  correct answer 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
 (ii)  M1  Solve detM = 0 
   
  a = 1 or 6 A1A1 3 Obtain correct answer, ft their (i) 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
 (iii)  M1  Attempt to eliminate one variable  
   A1  Obtain 2 correct equations in 2 unknowns 
   A1 3 Justify infinite number of solutions 
     SC  3/3 if unique solution conclusion    
     consistent with their (i) or (ii) 
     
   9  

672 +− aa  

 
10 (i)  M1  Use correct denominator 
   A1 2 Obtain given answer correctly 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
 (ii)  M1  Express terms as differences using (i) 
   M1  Do this for at least 3 terms 
   A1  First 3 terms all correct 
   A1  Last 2 terms all correct 

  
2

1
1

1
2
1

+
+

+
−

nn
 M1  Show relevant cancelling 

   A1 6 Obtain correct answer a.e.f. 
---------------------------------------------------------------------------------------------------------------------------------------------------

 (iii) 
2
1

 B1ft  stated or start at n + 1 as in (ii) 

  

∞S

2
1

1
1

+
−

+ nn
 M1   - their (ii) or show correct cancelling

  
  

  

∞S

)2)(1(
1

++ nn
 A1 3 Obtain given answer correctly 

   11 
 
 
 


